Vote

Предиктивная модель - эффективный инструмент поддержки принятия бизнес-решений. Создание такой модели - процесс поиска закономерностей с использованием алгоритмов машинного обучения (Mashine Lerning) в существующем наборе исторических данных (обучение модели) для предсказания наиболее вероятных вариантов развития событий в будущем (применение модели).

Классифицирующая модель позволяет разбить большой массив данных на группы (классы), характеризующиеся сходным набором признаков, используя явные и неявные закономерности. Применение такой модели, позволяет, например, определить группы пользователей, характеризующихся определенным поведением и сделать им предложения, интересные именно для них.

Для обеспечения качества работы модели необходим тщательный отбор и подготовка входных данных. Также может возникнуть необходимость во внешних данных. Результатом моей работы будет:

1) сама модель в формате, определяемом выбранной моделью (например, в случае линейных моделей это будет вектор весов каждого из факторов. Вес фактора определяет степень его влияния на результат)

2) отчет о валидности (точности предсказания) модели

3) файл с результатами применения модели к исследуемому набору данных

Vote

✓ Все подписчики являются офферами высочайшего качества.

✓ Без санкций со стороны соц. сети, т. к. все подписчики будут поступать порционно и плавно.

 По услуге может отписать до 15%, поэтому всегда добавляю больше.

Для лучшего результата рекомендую заказывать в связке с лайками и просмотрами.

Также при заказе от 3-х твипов за раз Вы получите +10% бонус на каждый твип!